Словарь
Абсциссой (лат. abscissa — отрезок) точки A называется координата этой точки на оси X'X в прямоугольной системе координат. Величина абсциссы точки A равна длине отрезка OB (см. рис. 1).
Если точка B принадлежит положительной полуоси OX, то абсцисса имеет положительное значение. Если точка B принадлежит отрицательной полуоси X'O, то абсцисса имеет отрицательное значение. Если точка A лежит на оси Y'Y, то её абсцисса равна нулю.
В прямоугольной системе координат ось X'X называется «осью абсцисс».
При построении графиков функций, ось абсцисс обычно используется как область определения функции.
Начало координат (начало отсчёта) в евклидовом пространстве — особая точка, обычно обозначаемая буквой О, которая используется как точка отсчёта для всех остальных точек. В евклидовой геометрии начало координат может быть выбрано произвольно в любой удобной точке.
Вектор, проведённый из начала координат, в другую точку называется радиус-вектором.
В декартовой системе координат, начало координат — это точка, в которой пересекаются все оси координат. Это означает, что все координаты этой точки равны нулю. Например, на плоскости она имеет координаты (0,0), а в трёхмерном пространстве — (0,0,0).
Начало координат делит каждую из осей на два луча — положительную полуось и отрицательную полуось.
В частности, начало координат можно ввести на числовой оси. В этом смысле можно говорить о начале координат для разных экстенсивных величин (времени, температуры и пр.)
Ординатой (от лат. ordinatus — расположенный в порядке) точки A называется координата этой точки на оси Y’Y в прямоугольной системе координат. Величина ординаты точки A равна длине отрезка OC.
Если точка C принадлежит положительной полуоси OY, то ордината имеет положительное значение. Если точка C принадлежит отрицательной полуоси Y'O, то ордината имеет отрицательное значение. Если точка A лежит на оси X'X, то её ордината равна нулю.
В прямоугольной системе координат ось Y'Y называется «осью ординат».
При построении графиков функций, ось ординат обычно используется как область значений функции.
Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника.
Геометрическая формулировка:
Изначально теорема была сформулирована следующим образом:
В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах.
Алгебраическая формулировка:
В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.
То есть, обозначив длину гипотенузы треугольника через c, а длины катетов через a и b:
Обе формулировки теоремы эквивалентны, но вторая формулировка более элементарна, она не требует понятия площади. То есть второе утверждение можно проверить, ничего не зная о площади и измерив только длины сторон прямоугольного треугольника.
Обратная теорема Пифагора:
Для всякой тройки положительных чисел a, b и c, такой, что , существует прямоугольный треугольник с катетами a и b и гипотенузой c.
На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии.
Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них: доказательства методом площадей, аксиоматические и экзотические доказательства (например, с помощью дифференциальных уравнений).
Created with the Personal Edition of HelpNDoc: Free Web Help generator